Notions of hyperbolicity in monoids

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notions of Computation as Monoids

There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article we show that these three notions can be seen as monoids in a monoidal category. We demonstrate that at this level of abstraction one can obtain useful results which can be instantiated to the different notions of computation. In particular, we show how free constructions ...

متن کامل

Hyperbolicity of monoids presented by confluent monadic rewriting systems

The geometry of the Cayley graphs of monoids defined by regular confluent monadic rewriting systems is studied. Using geometric and combinatorial arguments, these Cayley graphs are proved to be hyperbolic, and the monoids to be word-hyperbolic in the Duncan–Gilman sense. The hyperbolic boundary of the Cayley graph is described in the case of finite confluent monadic rewriting systems.

متن کامل

Semi-hyperbolicity and Hyperbolicity

We prove that for C1-diffeomorfisms semi-hyperbolicity of an invariant set implies its hyperbolicity. Moreover, we provide some exact estimations of hyperbolicity constants by semi-hyperbolicity ones, which can be useful in strict numerical computations.

متن کامل

Pointwise Hyperbolicity Implies Uniform Hyperbolicity

We provide a general mechanism for obtaining uniform information from pointwise data. A sample result is that if a diffeomorphism of a compact Riemannian manifold has pointwise expanding and contracting continuous invariant cone families, then the diffeomorphism is an Anosov diffeomorphism, i.e., the entire manifold is uniformly hyperbolic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2010

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2009.10.016