منابع مشابه
Notions of Computation as Monoids
There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article we show that these three notions can be seen as monoids in a monoidal category. We demonstrate that at this level of abstraction one can obtain useful results which can be instantiated to the different notions of computation. In particular, we show how free constructions ...
متن کاملHyperbolicity of monoids presented by confluent monadic rewriting systems
The geometry of the Cayley graphs of monoids defined by regular confluent monadic rewriting systems is studied. Using geometric and combinatorial arguments, these Cayley graphs are proved to be hyperbolic, and the monoids to be word-hyperbolic in the Duncan–Gilman sense. The hyperbolic boundary of the Cayley graph is described in the case of finite confluent monadic rewriting systems.
متن کاملSemi-hyperbolicity and Hyperbolicity
We prove that for C1-diffeomorfisms semi-hyperbolicity of an invariant set implies its hyperbolicity. Moreover, we provide some exact estimations of hyperbolicity constants by semi-hyperbolicity ones, which can be useful in strict numerical computations.
متن کاملPointwise Hyperbolicity Implies Uniform Hyperbolicity
We provide a general mechanism for obtaining uniform information from pointwise data. A sample result is that if a diffeomorphism of a compact Riemannian manifold has pointwise expanding and contracting continuous invariant cone families, then the diffeomorphism is an Anosov diffeomorphism, i.e., the entire manifold is uniformly hyperbolic.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2010
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2009.10.016